更多>>精华博文推荐
更多>>人气最旺专家

陈世豪

领域:岳塘新闻网

介绍:双过贸易额由原来的100亿美元上升到2014年的2200亿美元。...

欧阳剑

领域:飞华健康网

介绍:当天,我市各县(市、区)均选择了有品牌规模、有应季农产品、有地方特色,融合观光、游乐、科普、度假、博览等多种功能,集创意农业、农业景观、农业休闲、农事体验、订单农业于一体的农业基地,作为当地的主会场举办首届“中国农民丰收节”。w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际

利来官方网站w66利来
本站新公告w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际
wdp | 2019-01-16 | 阅读(638) | 评论(894)
②核心是可持续性消费。【阅读全文】
w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际
1av | 2019-01-16 | 阅读(401) | 评论(41)
2、GB50838-2015第条,敷设电力电缆的舱室,逃生口间距不宜大于200m。【阅读全文】
f1p | 2019-01-16 | 阅读(307) | 评论(358)
三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。【阅读全文】
9xd | 2019-01-16 | 阅读(69) | 评论(248)
三、工作要求“三统一”,要“统一部署、统一检查、统一记录分析”。【阅读全文】
i0o | 2019-01-16 | 阅读(309) | 评论(630)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
bm0 | 2019-01-15 | 阅读(286) | 评论(735)
 二元一次不等式(组)与平面区域课后篇巩固探究                A组1.若不等式Ax+By+50表示的平面区域不包括点(2,4),且k=A+2B,则k的取值范围是(  )≥-≤-解析由于不等式Ax+By+50表示的平面区域不包括点(2,4),所以2A+4B+5≥0,于是A+2B≥-,即k≥答案A2.图中阴影部分表示的区域对应的二元一次不等式组为(  )++y-解析取原点O(0,0)检验,它满足x+y-1≤0,故异侧点应满足x+y-1≥0,排除B,D.点O的坐标满足x-2y+2≥0,排除C.故选A.答案A3.若点P14,a在0≤,,3解析由题意,知12≤a≤1答案A4.不等式(x+2y-2)(x-y+1)≥0表示的平面区域是(  )解析不等式(x+2y-2)(x-y+1)≥0等价于x+2y答案A5.在平面直角坐标系中,若不等式组x+y-1≥0,x-A.-解析图中的阴影部分即为满足x-1≤0与x+y-1≥0的平面区域,而直线ax-y+1=0恒过点(0,1),故可看作直线绕点(0,1)旋转.当a=-5时,满足题意的平面区域不是一个封闭区域;当a=1时,满足题意的平面区域的面积为1;当a=2时,满足题意的平面区域的面积为;当a=3时,满足题意的平面区域的面积为2.故选D.答案D6.不等式组2x-y解析该不等式组表示的平面区域是一个直角三角形及其内部,其面积等于×3×6=9.答案97.若点(1,2)与点(-3,4)在直线x+y+a=0的两侧,则实数a的取值范围是     .解析由题意,得(1+2+a)(-3+4+a)0,解得-3a-1.故实数a的取值范围是(-3,-1).答案(-3,-1)8.若不等式组x-y≥0,2解析不等式组x-y≥0,2x+y≤2,y≥0表示的平面区域如图中的阴影部分所示,画出直线x+y=0,并将其向右上方平行移动,直至直线过点(1,0),均满足题意,此时0a≤1;将其再向右上方平移,原不等式组所表示的平面区域就不能构成三角形了,直至直线经过点A2答案0a≤1或a≥9.画出以A(3,-1),B(-1,1),C(1,3)为顶点的△ABC的区域(包括边界),并写出该区域所表示的二元一次不等式组.解如图所示,直线AB,BC,CA所围成的区域就是所要画的△ABC的区域,其中直线AB,BC,CA的方程分别为x+2y-1=0,x-y+2=0,2x+y-5=0.在△ABC内取一点P(1,1),将其代入x+2y-1,得1+2×1-1=2代入x-y+2,得1-1+2代入2x+y-5,得2×1+1-50.又所画区域包括边界,所以该区域所表示的二元一次不等式组为10.导学号04994072在平面直角坐标系中,求不等式组y≥x-解原不等式组可化为y上述不等式组表示的平面区域如图阴影部分所示,则△ABC的面积即为所求.易知点B的坐标为12,-12,点C的坐标为(所以S△ABC=S△ADC+S△ADB=×2×1+×2×12B组1.不等式(x-2y+1)(x+y-3)≤0在直角坐标平面内表示的区域(阴影部分)是下列图形中的(  )解析∵(x-2y+1)(x+y-3)≤0,∴x-2答案C2.二元一次不等式组解析不等式组表示的平面区域如图中阴影部分所示,易知图中阴影部分有4个整点,分别是(0,0),(0,-1),(1,-1),(2,-2),故选B.答案B3.若不等式组x-y+5≥0,yA.(-∞,5)B.[7,+∞)C.[5,7)D.(-∞,5)∪[7,+∞)解析作出不等式组x-y+5≥0,0≤x答案A4.如图,四条直线x+y-2=0,x-y-1=0,x+2y+2=0,3x-y+3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组       表示.解析点(0,0)在该平面区域内,点(0,0)和平面区域在直线x+y-2=0的同侧,把(0,0)代入x+y-2,得0+0-20,所以对应的不等式为x+y-20.同理可得其他三个相应的不等式为x+2y+20,3x-y+30,x-y-10.故所求不等式组为3答案35.若直线y=kx+1将不等式组x-y+2≥0,x解析不等式组表示的平面区域如图中阴影部分所示,△ABC是等腰直角三角形,且BC⊥x轴,A(-1,1).直线y=kx+1经过点(0,1),要使直线将△ABC的面积等分,则k=0.答案06.画出不等式|x|+|y|≤1【阅读全文】
iuu | 2019-01-15 | 阅读(183) | 评论(940)
在日常生活中,也时刻要求自己严格遵守各项规制度,时刻保持高昂的斗志和良好的精神状态。【阅读全文】
jv9 | 2019-01-15 | 阅读(922) | 评论(636)
到目前为止,已经形成了了一套较为完善可行的智能图书馆管理系统。【阅读全文】
w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际,w66.利来国际
pbh | 2019-01-15 | 阅读(628) | 评论(290)
体育运动既健身又陶冶情操,假期学习之余可以过把瘾啊。【阅读全文】
mif | 2019-01-14 | 阅读(174) | 评论(813)
浙江大学硕士学位论文目录3.2.2.1菌种的富集筛选与鉴定…………………………………………253.2.2.2挑选的菌株对PCB61的降解能力研究…………………………253.3结果与讨论……………………………………………………………………263.3.1分离茵的鉴定结果………………………………………………………..263.3.2高效降解菌的挑选………………………………………………………..283.3.3T29和W5的分类鉴定…………………………………………………..283.3.4生长曲线…………………………………………………………………..293.3.5两种菌对不同的碳源的利用情况……………………………………….303.4本章小结………………………………………………………………………314微生物降解PCBS性能研究………………………………………………………………..324.1引言…………………………………………………………………………….324.2材料与方法……………………………………………………………………324.2.1实验材料………………………………………………………………….324.2.2实验方法…………………………………………………………………..334.2.2.1添加不同碳源对微生物群落降解PCBl242的影响……………334.2.2.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响…………………………………………………………………….334.2.2.31PCB242对Bacillussp.W5的联苯和sp.T29和Corynebacterium苯甲酸趋药性的影响研究…………………………………………………………一334.2.2.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究….344.3结果与讨论……………………………………………………………………344.3.1添加不同碳源对微生物群落降解PCBl242的影响……………………344.3.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响………………………………………………………………..354.3.3PCBl242对Bacillussp.T29和Corynebacteriumsp.W5的联苯和苯甲酸趋药性的影响研究………………………………………………………………364.3.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究………….374.4本章小结………………………………………………………………………385全文研究结论与展望……………………………………………………………………39III浙江大学硕士学位论文目录5.1研究结论………………………………………………………………………395.2研究展望………………………………………………………………………395.3创新点…………………………………………………………………………………………………40参考文献………………………………………………………………………………………………….4l攻读硕士期间获得成果…………………………………………………………………….48【阅读全文】
e8e | 2019-01-14 | 阅读(552) | 评论(997)
本文的研究,可以帮助政府部门有针对性地提出指导高校建设的思路、’办法,使政府充分了解BOT模式可能遇到的风险并做好防控预案;使高校筹资渠道多元化、后勤建设社会化,减轻高校负债,解决高校扩建难的问题,更好地满足在校学生学习、生活、娱乐的需求,使公共设施运作更加高效、科学、节俭;使投资方通过自主经营实现成本回收并获取更大的收益。【阅读全文】
ho8 | 2019-01-14 | 阅读(969) | 评论(796)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
z8a | 2019-01-14 | 阅读(609) | 评论(486)
管廊的布局规划很难考虑50年甚至更长期的发展,可能会导致若干年后与其他地下设施之间的不协调。【阅读全文】
zl9 | 2019-01-13 | 阅读(705) | 评论(766)
优点是依靠价值规律的调节,可以充分发挥出市场的竞争机制,激发经济发展的活力,但弊端是盲目、恶性竞争导致资源浪费、经济波动,甚至引发周期性金融危机……我国因该实行什么样的经济制度呢?我国的基本经济制度公有制经济其他所有制经济主体重要组成部分个体经济私营经济外资经济国有经济集体经济混合所有制中的国有成分和集体成分以公有制为主体,多种所有制经济共同发展一、我国的基本经济制度国有经济大庆油田国有经济上海宝山钢铁厂国有经济私营经济国有经济长安汽车长城汽车中国通信华为手机国有经济私营经济私营经济外资经济课本31页:一、我国的基本经济制度1、基本内容:2、地位:知识小结公有制为主体、多种所有制经济共同发展。【阅读全文】
agc | 2019-01-13 | 阅读(798) | 评论(193)
基本格式1、标题2、正文开头:概述情况,总体评价;提纲挈领,总括全文。【阅读全文】
共5页

友情链接,当前时间:2019-01-16

利来国际老牌博彩 利来娱乐 利来国际娱乐官方 利来ag旗舰厅手机版 w66利来国际
利来国际最给利的老牌 利莱国际w66 利来国际最老牌手机板 利来娱乐国际 利来国际AG
利来娱乐国际 利来电游 利来国际手机客户端 利来国际备用
w66利来娱乐公司 利莱国际w66 利来国际w66.com 利来国际W66 利来国际娱乐平台
宁远县| 宣汉县| 南安市| 教育| 连城县| 应城市| 永寿县| 甘洛县| 呈贡县| 诸暨市| 武汉市| 綦江县| 铁岭市| 冷水江市| 呼伦贝尔市| 南涧| 新河县| 阿城市| 华安县| 三河市| 津南区| 绥江县| 普兰店市| 彭泽县| 黑龙江省| 天津市| 万州区| 肃宁县| 盖州市| 富民县| 余姚市| 永德县| 武宣县| 浪卡子县| 乳山市| 陆川县| 河池市| 河东区| 奉化市| 龙门县| 曲沃县| http://m.20485965.cn http://m.19740257.cn http://m.74549327.cn http://m.32111740.cn http://m.41478038.cn http://m.87478577.cn